

 1

OOAD (OBJECT ORIENTED ANALYSIS & DESIGN)

Unit-1

 A Brief History
The object-oriented paradigm took its shape from the initial concept of a new
programming approach, while the interest in design and analysis methods
came much later.

 The first object–oriented language was Simula (Simulation of real
systems) that was developed in 1960 by researchers at the Norwegian
Computing Center.

 In 1970, Alan Kay and his research group at Xerox PARK created a
personal computer named Dynabook and the first pure object-oriented
programming language (OOPL) - Smalltalk, for programming the
Dynabook.

 In the 1980s, Grady Booch published a paper titled Object Oriented
Design that mainly presented a design for the programming language,
Ada. In the ensuing editions, he extended his ideas to a complete
object–oriented design method.

 In the 1990s, Coad incorporated behavioral ideas to object-oriented
methods.

The other significant innovations were Object Modelling Techniques (OMT) by
James Rumbaugh and Object-Oriented Software Engineering (OOSE) by Ivar
Jacobson.

The Concept Of Object-Orientation
Object-orientation is what’s referred to as a programming paradigm. It’s not a
language itself but a set of concepts that is supported by many languages

Analysis and Design
For a given problem, Analysis focus on investigation of the problem and
requirements, rather than searching for a solution. For example, if a new
online shopping system is desired, how will the system be used? “Analysis” is
a broad term, best qualified, as in requirements analysis (an investigation of
the requirements) or object analysis (an investigation of the domain objects).

Design focuses on a conceptual solution that fulfills the requirements, rather
than its implementation. As with analysis, the term is best qualified, as
in object design or database design.

 Object-Oriented Analysis And Design (OOAD)
It’s a structured method for analyzing, designing a system by applying the
object-orientated concepts, and develop a set of graphical system models
during the development life cycle of the software.
 OR
Object-oriented analysis and design (OOAD) is a technical approach used in
the analysis and design of an application or system through the application of
the object-oriented paradigm and concepts including visual modeling. This is

 2

applied throughout the development life cycle of the application or system,
fostering better product quality and even encouraging stakeholder
participation and communication.

During object-oriented analysis, the focus is on finding and describing
objects or concepts in the problem domain. For example, in the case of library
management system, some of the concepts are Book, Library and Librarian.

In the object-oriented analysis, we …
1. Elicit requirements: Define what does the software need to do, and what’s

the problem the software trying to solve.
2. Specify requirements: Describe the requirements, usually, using use cases

(and scenarios) or user stories.
3. Conceptual model: Identify the important objects, refine them, and define

their relationships and behavior and draw them in a simple diagram.
During object-oriented design, the focus is on defining software objects and
how they collaborate to fulfill the requirements. For example, in the library
system, a Book software object may have a title attribute
and getChapter method.
Finally, in Implementation or object-oriented programming, the design objects
are implemented as classes like Book class in Java.

 Object Oriented Development
Object Oriented Development (OOD) has been touted as the next great
advance in software engineering. It promises to reduce development time,
reduce the time and resources required to maintain existing applications,
increase code reuse, and provide a competitive advantage to organizations
that use it. While the potential benefits and advantages of OOD are real,
excessive hype has lead to unrealistic expectations among executives and
managers. Even software developers often miss the subtle but profound
differences between OOD and classic software development.
Expected Benefits of OOD

 3

Many benefits are cited for OOD, often to an unrealistic degree. Some of
these potential benefits are

 Faster Development: OOD has long been touted as leading to faster
development. Many of the claims of potentially reduced development
time are correct in principle, if a bit overstated.

 Reuse of Previous work: This is the benefit cited most commonly in
literature, particularly in business periodicals. OOD produces software
modules that can be plugged into one another, which allows creation of
new programs. However, such reuse does not come easily. It takes
planning and investment.

 Increased Quality: Increases in quality are largely a by-product of this
program reuse. If 90% of a new application consists of proven, existing
components, then only the remaining 10% of the code has to be tested
from scratch. That observation implies an order-of-magnitude reduction
in defects.

 Modular Architecture: Object-oriented systems have a natural
structure for modular design: objects, subsystems, framework, and so
on. Thus, OOD systems are easier to modify. OOD systems can be
altered in fundamental ways without ever breaking up since changes
are neatly encapsulated. However, nothing in OOD guarantees or
requires that the code produced will be modular. The same level of care
in design and implementation is required to produce a modular structure
in OOD, as it is for any form of software development.

 Client/Server Applications: By their very nature, client/server
applications involve transmission of messages back and forth over a
network, and the object-message paradigm of OOD meshes well with
the physical and conceptual architecture of client/server applications.

 Better Mapping to the Problem Domain: This is a clear winner for
OOD, particularly when the project maps to the real world. Whether
objects represent customers, machinery, banks, sensors or pieces of
paper, they can provide a clean, self-contained implication which fits
naturally into human thought processes.

 Object oriented themes:-
 Abstraction
 Encapsulation
 Combining Data& behaviour
 Sharing
 Emphasis on the essence of object
 Synergy

1) Abstraction:
 It means focusing on the essential aspects of an entity while ignoring its

details.
 This means focusing on what an object is and does, before deciding

how it should be implemented.
 Use of abstraction during analysis means dealing only with application

domain concepts, not making decisions before problem is understood.

 4

2) Encapsulation:
 It means information hiding. It consists of separating the external

aspects of an object, which are accessible to other objects, from internal
implementation details of the object, which are hidden from other
objects.

 It prevents program from becoming so interdependent that a small
change has massive ripple effect. It gives the ability to combine data
structure and behaviour in a single entity.

3) Combining Data and Behavior:
 The burden of calling code for data execution and operations separately

can be minimized by combining data properties and behavioural
properties of an entity together.

 In object oriented program data structure and procedure is defined in
single class definition.

4) Sharing:
 Object Oriented technologies promote sharing at different levels.

Inheritance of both data structure and behavior lets subclasses share
common code.

 This sharing via inheritance is one of the main advantages of Object
Oriented languages.

 Object Oriented Development not only lets you share information within
an application but also offers the prospect of reusing designs and code
on future projects.

5) Emphasis on the essence of object:
 Object Oriented Technology stresses what an object is, rather than how

it is used.
 The uses of an object depend on the details of the application and often

change during development.

6. Synergy:

 Identity, classification, polymorphism and inheritance characterize
Object Oriented languages.

 Each of these concepts can be used in isolation but together they
complement each other synergistically.

 Usefulness of OOP
Object-oriented programming (OOP) is a programming paradigm based upon
objects (having both data and methods) that aims to incorporate the
advantages of modularity and reusability. Objects, which are usually instances
of classes, are used to interact with one another to design applications and
computer programs.
The important features of object–oriented programming are −

 Bottom–up approach in program design
 Programs organized around objects, grouped in classes
 Focus on data with methods to operate upon object’s data
 Interaction between objects through functions

 5

 Reusability of design through creation of new classes by adding
features to existing classes

 OOAD Object Modeling Techniques
The object modeling techniques is an methodology of object oriented analysis,
design and implementation that focuses on creating a model of objects from
the real world and then to use this model to develop object–oriented software.
object modeling technique, OMT was developed by James Rambaugh. Now-
a-days, OMT is one of the most popular object oriented development
techniques. It is primarily used by system and software developers to support
full life cycle development while targeting object oriented implementations.
OMT has proven itself easy to understand, to draw and to use. It is very
successful in many application domains: telecommunication, transportation,
compilers etc. The popular object modeling technique are used in many real
world problems. The object-oriented paradigm using the OMT spans the entire
development cycle, so there is no need to transform one type of model to
another.
Phase of OMT

The OMT methodology covers the full software development life cycle. The
methodology has the following phase.

1. Analysis - Analysis is the first phase of OMT methodology. The aim of
analysis phase is to build a model of the real world situation to show its
important properties and domain. This phase is concerned with
preparation of precise and correct modelling of the real world. The
analysis phase starts with defining a problem statement which includes
a set of goals. This problem statement is then expanded into three
models; an object model, a dynamic model and a functional model. The
object model shows the static data structure or skeleton of the real world
system and divides the whole application into objects. In others words,
this model represents the artifacts of the system. The dynamic model
represents the interaction between artifacts above designed
represented as events, states and transitions. The functional model
represents the methods of the system from the data flow perspective.
The analysis phase generates object model diagrams, state diagrams,
event flow diagrams and data flow diagrams.

2. System design - The system design phase comes after the analysis
phase. System design phase determines the overall system architecture
using subsystems, concurrent tasks and data storage. During system
design, the high level structure of the system is designed. The decisions
made during system design are:

o The system is organized in to sub-systems which are then
allocated to processes and tasks, taking into account concurrency
and collaboration.

o Persistent data storage is established along with a strategy to
manage shared or global information.

 6

o Boundary situations are checked to help guide trade off priorities.
3. Object design - The object design phase comes after the system design

phase is over. Here the implementation plan is developed. Object design
is concerned with fully classifying the existing and remaining classes,
associations, attributes and operations necessary for implementing a
solution to the problem. In object design:

o Operations and data structures are fully defined along with any
internal objects needed for implementation.

o Class level associations are determined.
o Issues of inheritance, aggregation, association and default values

are checked.
4. Implementation - Implementation pahse of the OMT is a matter of

translating the design in to a programming language constructs. It is
important to have good software engineering practice so that the design
phase is smoothly translated in to the implementation phase. Thus while
selecting programming language all constructs should be kept in mind
for following noteworthy points.

o To increase flexibility.
o To make amendments easily.
o For the design traceability.
o To increase efficiency.

